EXAMEN SOLUCIONADO MATEMÁTICAS CCSS
MATEMÁTICAS 2º BACHILLERATO CIENCIAS SOCIALES
PROBABILIDAD ESTADÍSTICA ANÁLISIS PROGRAMACIÓN LINEAL
EXAMEN RESUELTO MATEMÁTICAS II CCSS. 2º DE BACHILLERATO. TERCER TRIMESTRE PRUEBA 2 DEL CURSO 2024-25. PROBABILIDAD Y ESTADÍSTICA, ANÁLISIS DE FUNCIONES, ÁLGEBRA Y PROGRAMACIÓN LINEAL, REALIZADO EN EL PILAR:
INTERESA LA CONSULTA DE LOS SIGUIENTES ARTÍCULOS DENTRO DE ESTE PROYECTO DE MEJORA DEL APRENDIZAJE EN CIENCIAS:
-
- PROBABILIDAD. DIAGRAMAS EN ÁRBOL.
- REGLA DE CRAMER. SISTEMAS DE ECUACIONES PARA BACHILLERATO
- DISTRIBUCIÓN NORMAL DE PROBABILIDADES, PARA MATEMÁTICAS DE BACHILLERATO
- DISTRIBUCIÓN BINOMIAL DE PROBABILIDAD, PARA MATEMÁTICAS DE BACHILLERATO
- PROBABILIDAD E INTERVALOS DE CONFIANZA, PARA MATEMÁTICAS DE 2º BACHILLERATO CIENCIAS SOCIALES
- FUNCIONES. ANÁLISIS
- CÁLCULO DE INTEGRALES PARA MATEMÁTICAS DE BACHILLERATO
- INTEGRALES Y DERIVADAS. PROBLEMAS CONTEXTUALIZADOS
ESTA PRUEBA SIGUE LA DINÁMICA QUE SE REFLEJA EN LA PROGRAMACIÓN PARA ESTE CURSO DE MATEMÁTICAS II DE 2º DE BACHILLERATO CIENCIAS SOCIALES: MATEMÁTICAS II APLICADAS A LAS CIENCIAS SOCIALES PARA 2º DE BACHILLERATO. DESARROLLO DE LA ASIGNATURA
LOS ENUNCIADOS DE LA PRUEBA (X1043):
X1043 PRUEBA 2 EVALUACION 3 MAT II CCSS 2425_v1LOS EJERCICIOS DE LA PRUEBA Y SU RESOLUCIÓN PASO A PASO:
EJERCICIO M2BCCSSE3129:
Un estudio reciente, realizado sobre 400 internautas de una región, de edades comprendidas entre 16 y 65 años, indica que 344 usan redes sociales.
a) Con una confianza del 97%, construir un intervalo de confianza para la proporción de internautas de la región que no usan redes sociales.
b) Si, para estimar la proporción de internautas que usan redes sociales, se obtiene el intervalo [0,826, 0,894]. ¿Cuál es el nivel de confianza utilizado?.
c) Si la población de la región, con edades entre 16 y 65 años, es de 400000 personas, usando el nivel de confianza del apartado b), ¿entre qué límites está el número esperado de los que no usan redes sociales?
SOLUCIÓN PASO A PASO DEL EJERCICIO DE ESTE EJERCICIO DE INTERVALO DE CONFIANZA DE LA PROPORCIÓN:
EJERCICIO M2BCCSSE3129 INTERVALO DE CONFIANZA DE LA PROPORCION_v1
EJERCICIO M2BCCSSE3130:
El gasto mensual en agua de las familias de 4 miembros es una normal de media 32 euros con una desviación típica de 10 euros. Hallar (justificando las respuestas):
a) Probabilidad de que el gasto mensual de una de estas familias sea mayor que 36 euros.
b) Probabilidad de que el gasto mensual de una de estas familias esté entre 28 y 35 euros.
c) Probabilidad de que el gasto mensual medio de 9 de estas familias no supere los 30 euros.
SOLUCIÓN PASO A PASO DEL EJERCICIO DE ESTE EJERCICIO DE DISTRIBUCIÓN NORMAL DE PROBABILIDAD:
EJERCICIO M2BE3130 DISTRIBUCIÓN NORMAL DE PROBABILIDAD_v1
EJERCICIO M2BCCSSE3131:
El dueño de una tienda de chucherías dispone de 10 paquetes de pipas, 30 chicles y 18 bombones. Decide que para su mejor venta confeccionará dos tipos de paquetes: el tipo A estará formado por un paquete de pipas, dos chicles y dos bombones y se venderá a 1´5 euros. El tipo B estará formado por un paquete de pipas, cuatro chicles y un bombón y se venderá a 2 euros.
a) Plantea el correspondiente problema de programación lineal.
b) Representa la región factible con todos los vértices.
c) Calcule el número de paquetes de tipo A y B que se tienen que confeccionar y vender para obtener un beneficio máximo. Determine también este beneficio máximo.
SOLUCIÓN PASO A PASO DEL EJERCICIO DE ESTE EJERCICIO DE PROGRAMACIÓN LINEAL:
EJERCICIO M2BE3131 PROGRAMACIÓN LINEAL_v1
EJERCICIO M2BCCSSE3132:
Un hotel tiene habitaciones individuales (para una persona), dobles (para dos personas) y familiares (para cuatro personas). El hotel tiene un total de 144 habitaciones con una capacidad total de 312 personas; además, el número de habitaciones dobles es igual al triple de la suma de habitaciones individuales y familiares. Plantear y resolver un sistema de ecuaciones lineales para determinar el número de habitaciones de cada tipo que tiene el hotel.
SOLUCIÓN PASO A PASO DEL EJERCICIO DE ESTE EJERCICIO DE ÁLGEBRA, DE PLANTEAMIENTO Y RESOLUCIÓN DE SISTEMAS DE ECUACIONES:
EJERCICIO M2BE3132 SISTEMA DE ECUACIONES TRES POR TRES_v1
EJERCICIO M2BCCSSE3133:
Supongamos que mide, sobre una escala en milímetros, el nivel del agua en un pantano en función del número de días, x, transcurridos en el año:
a) Determinar los intervalos de crecimiento y decrecimiento.
b) ¿En algún momento el nivel es mayor que 863?
c) ¿Presenta la función alguna discontinuidad?
SOLUCIÓN PASO A PASO DEL EJERCICIO DE ESTE EJERCICIO DE ANÁLISIS PARA UNA FUNCIÓN A TROZOS:
EJERCICIO M2BE3133 FUNCIÓN A TROZOS CONTINUIDAD MONOTONÍA_v1