Skip to content
ACHIMAGEC: HIJOS DEL SOL
ACHIMAGEC: HIJOS DEL SOL

PROYECTO DE MEJORA DEL APRENDIZAJE EN CIENCIAS

Primary Navigation Menu
Menu
  • FÍSICA Y QUÍMICA
    • FÍSICA Y QUÍMICA 1º BAC
    • FÍSICA 2º BAC.
    • QUÍMICA 2º BAC
    • FÍSICA Y QUÍMICA 2º E.S.O.
    • FÍSICA Y QUÍMICA 3º E.S.O.
    • FÍSICA Y QUÍMICA 4º E.S.O.
  • MATEMÁTICAS
    • MATEMÁTICAS 1º BAC
    • MATEMÁTICAS 2º BAC
    • MATEMÁTICAS 1º E.S.O.
    • MATEMÁTICAS 2º E.S.O.
  • COMPETENCIAS
    • COMPETENCIA MATEMÁTICA Y EN CIENCIA, TECNOLOGÍA E INGENIERÍA
    • COMPETENCIA EN COMUNICACIÓN LINGÜISTICA
    • COMPETENCIA PERSONAL, SOCIAL Y DE APRENDER A APRENDER
    • COMPETENCIA EN CONCIENCIA Y EXPRESIÓN CULTURALES
    • COMPETENCIA EMPRENDEDORA (BLV)
    • COMPETENCIA DIGITAL
    • COMPETENCIA CIUDADANA
    • COMPETENCIA PLURILINGÜE
    • COMPETENCIA ESPIRITUAL
  • L.O.M.L.O.E.
  • ORIENTACIÓN
    • TUTORIA
    • ATENCIÓN A LA DIVERSIDAD
    • ADAPTACIONES CURRICULARES
    • innovación en evaluación
    • innovación en educación
    • COOPERATIVO
  • SABERES BÁSICOS
    • MATEMÁTICAS
      • ARITMÉTICA
      • ÁLGEBRA
      • TRIGONOMETRÍA
      • GEOMETRÍA
      • ANÁLISIS
      • PROBABILIDAD
    • FÍSICA
      • CINEMÁTICA
      • DINÁMICA
      • TRABAJO Y ENERGÍA
      • GRAVITATORIO
      • ELÉCTRICO
      • MAGNÉTICO
      • ONDAS
      • ÓPTICA
      • RELATIVIDAD
      • CUÁNTICA
      • FÍSICA NUCLEAR
    • QUÍMICA
      • LA MATERIA
      • FORMULACIÓN
      • REACCIONES
      • EQUILIBRIO
      • ORGÁNICA
  • EL PROYECTO DE CIENCIAS ACHIMAGEC
    • INSTITUTOS DIOCESANOS
    • APRENDIZAJE BASADO EN PROYECTOS (A.B.P.)
    • BALANCE DEL PROYECTO
    • INTERDISCIPLINAR
  • VÍDEOS
  • DIÁLOGOS CON LA FE
    • DIÁLOGO CIENCIA-FE
    • DIÁLOGO CULTURA-FE
    • DIÁLOGO REALIDAD-FE
  • EDUCACIÓN PARA LA SALUD
  • EXÁMENES RESUELTOS
    • EXÁMENES MATEMÁTICAS 2º BAC
    • EXÁMENES MATEMÁTICAS II CCSS
    • EXÁMENES MATEMÁTICAS 4º E.S.O.
    • EXÁMENES DE FÍSICA 2º BACHILLERATO
    • EXÁMENES DE QUÍMICA 2º BAC
    • EXÁMENES DE FÍSICA Y QUÍMICA 1º BAC
    • EXÁMENES DE MATEMÁTICAS 1º BAC
    • EXÁMENES DE FÍSICA Y QUÍMICA 4º E.S.O.
    • EXÁMENES DE FÍSICA Y QUÍMICA 3º ESO
    • EXÁMENES DE FÍSICA Y QUÍMICA 2º E.S.O.
  • PROGRAMACIONES DIDÁCTICAS
    • PROGRAMACIÓN FÍSICA Y QUÍMICA E.S.O. Y BACHILLERATO
    • PROGRAMACIÓN MATEMÁTICAS E.S.O. Y BACHILLERATO
    • PROGRAMACIÓN TECNOLOGÍA E INGENIERÍA BACHILLERATO

FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DE MASAS

FUERZAS GRAVITATORIAS DISTRIBUCIONES MASAS

RELACIONADO CON GRAVITACIÓN EN EL UNIVERSO

FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DE MASAS. OBTENCIÓN DE FUERZAS GRAVITATORIAS VECTORIALMENTE:FUERZAS GRAVITATORIAS DISTRIBUCIONES MASAS

Desde el proyecto teníamos interés en publicar unos vídeos al respecto del tratamiento vectorial de las fuerzas gravitatorias, en distribuciones discretas de masas, evitando la complicación trigonométrica.

La obtención de fuerzas gravitatorias, y electrostáticas, en distribuciones discretas de masas, o de cargas, a nivel vectorial genera complicaciones la mayor parte de las veces como consecuencia de carencias en estrategias trigonométricas que pueden presentar los alumnos.

La expresión vectorial de la Ley de Gravitación Universal que proponemos en los dos videos que se muestran, evita la trigonometría, aunque es necesario algo de geometría vectorial.

Este contenido guarda mucha relación con el contenido propio de matemáticas para este nivel relacionado con vectores (Sentido Numérico), con lo que puede y debe verse como actividad interdepartamental.

ASPECTOS Y ELEMENTOS CURRICULARES LOMLOE PARA DOCENTES, AL FINAL DEL ARTÍCULO, PARA NO INTERFERIR CON LO QUE ES DE INTERÉS PARA NUESTROS ALUMNOS.


AL RESPECTO DE LA NOTACIÓN CIENTÍFICA:

TENER EN CUENTA QUE EN OCASIONES NO ES POSIBLE TENER UN EDITOR DE TEXTO DE NIVEL, O CALCULADORAS ANTIGUAS, CON LO QUE EN ESOS CASOS, o en PRUEBAS CON AUTOCORRECTOR, TIPO SOCRATIVE.

6,67·10-11 se expresa como 6.67E-11

NOTAR QUE NO SE PONE UNA COMA SINO UN PUNTO, TODO SIN ESPACIOS

NOTAR QUE UN NÚMERO DISTINTO DE CERO, SEGUIDO DEL PUNTO, Y DE DOS NÚMEROS REDONDEADO CONVENIENTEMENTE EL ÚLTIMO.

Si queremos expresar un vector, para no tener que poner el i y j con flechitas encima, podemos utilizar el sistema de componentes con un paréntesis, en plan: (3.34E-12,4.32E-11), componentes x e y del vector separados por una «,».

Así es como tendríamos que expresar un resultado en pruebas con autocorrección, tipo Socrative.


INTERESA LA CONSULTA DEL ARTÍCULO: LEY DE GRAVITACIÓN UNIVERSAL

EJERCICIO FQ1E2375:

Supongamos dos masas aisladas y puntuales: m1=1 kg situada en el punto (1,1) y m2=2 kg en el punto (4,2) de un sistema de referencia cartesiano, en el que las coordenadas están expresadas en metros. Para esta situación se pide el vector fuerza gravitatoria que la masa 1 hace sobre la masa 2 (F12).

DATO: G=6,67·10-11 Unidades S.I.

IR AL VÍDEO QUE RESUELVE EL EJERCICIO: https://youtu.be/luJ1hCMzXos

En el vídeo además se explica el modo de utilizar la LEY DE GRAVITACIÓN UNIVERSAL para obtener expresiones vectoriales de las FUERZAS GRAVITATORIAS.

EJERCICIO F2BE2113:

Disponemos en un sistema de referencia cartesiano, de dos masas: m1=1 kg y m2=2 kg , colocadas respectivamente en los puntos A (-2.1) y B (4,2). Las coordenadas están expresadas en metros.

A.- Hallar la Fuerza Gravitatoria que la masa 1 hace sobre la masa 2 (F12).

B.- Hallar la Fuerza Gravitatoria que la masa 2 hace sobre la masa 1 (F21).

DATO: G=6,67·10-11 Unidades S.I.

IR AL VÍDEO QUE RESUELVE EL EJERCICIO: https://youtu.be/_ynPnEunMrQ

EJERCICIO FQ1BE2376:

Supongamos tres masas aisladas y puntuales: m1=1 kg situada en el punto (-2,0) y m2=2 kg en el punto (3,1) y m3= 3 kg en el punto (2,-2) de un sistema de referencia cartesiano, en el que las coordenadas están expresadas en metros. Para esta situación se pide el vector fuerza gravitatoria que afectará a la masa 2 como consecuencia de la presencia de las masas 1 y 3.

DATO: G=6,67·10-11 Unidades S.I.

IR AL VÍDEO QUE RESUELVE EL EJERCICIO: https://youtu.be/jpk6g1N-VKo

EJERCICIO FQ1BE2670:

Disponemos de tres masas aisladas y puntuales, que suponemos las únicas del Universo: m1=1 kg situada en el punto (2,0) y m2=2 kg en el punto (5,-4) y m3= 3 kg en el punto (1,3) de un sistema de referencia cartesiano, en el que las coordenadas están expresadas en metros. Para esta situación se pide:

a.- Hallar la fuerza que la masa 1 hace sobre la masa 3 (vector y módulo).

b.- Hallar la fuerza que la masa 2 hace sobre la masa 3 (vector y módulo).

c.- Hallar la fuerza resultante sobre la masa 3 (vector y módulo).

DATO: G=6,67·10-11 Unidades S.I.

EJERCICIO FQ1BE2377:

Disponemos en un sistema de referencia cartesiano, de tres masas: m1=1 kg y m2= 2 kg , m3=3 kg, colocadas respectivamente en los puntos A (-1,2), B (0,4) y C(3,1), estando las componentes expresadas en metros.

a.- Dibujar con el rigor esperado en este nivel, las masas en el sistema cartesiano, las fuerzas que actúan sobre la masa m3, así como obtener gráficamente la fuerza resultante sobre la masa m3, utilizando correctamente la regla del paralelogramo con las fuerzas implicadas sobre m3.

b.- Obtener vectorialmente la fuerza gravitatoria que la masa 1 hace sobre la masa 3.

c.- Obtener vectorialmente la fuerza gravitatoria que la masa 2 hace sobre la masa 3.

d.- Hallar la fuerza gravitatoria (vector y módulo) a la que se encuentra sometida la masa 3 como consecuencia de la presencia de las otras dos masas.

DATO: G=6,67·10-11 Unidades S.I.

IR AL ARTÍCULO CON LA RESOLUCIÓN DETALLADA DEL EJERCICIO: EJERCICIO RESUELTO (FQ1BE2377) DE FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DISCRETAS DE MASAS, PARA FÍSICA DE BACHILLERATO. CAMPO GRAVITATORIO

EJERCICIO FQ1BE3055:

Disponemos en un sistema de referencia cartesiano, de tres masas: m1=1,7 kg y m2= 0,8 kg , m3= 750 g, colocadas respectivamente en los puntos A (-3,-2), B (-2,3) y C(4,-1), estando las componentes expresadas en metros.

a.- Dibujar con el rigor esperado en este nivel, las masas en el sistema cartesiano, las fuerzas que actúan sobre la masa m2, así como obtener gráficamente la fuerza resultante sobre la masa m2, utilizando correctamente la regla del paralelogramo con las fuerzas implicadas sobre m2.

b.- Obtener vectorialmente la fuerza gravitatoria que la masa 1 hace sobre la masa 2.

c.- Obtener vectorialmente la fuerza gravitatoria que la masa 3 hace sobre la masa 2.

d.- Hallar la fuerza gravitatoria (vector y módulo) a la que se encuentra sometida la masa 2 como consecuencia de la presencia de las otras dos masas.

DATO: G=6,67·10-11 Unidades S.I.

IR AL ARTÍCULO CON LA RESOLUCIÓN DETALLADA DEL EJERCICIO: EJERCICIO RESUELTO DE FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DE MASAS

EJERCICIO FQ1BE2175:

En un sistema de referencia cartesiano, se sitúan dos masas puntuales: m1 de 1 kg de masa y colocada en el punto (-1,2) y m2 de 2 kg situada en el punto (3,0).

Hallar para esta distribución discreta de masas y supuesta aislada del resto del universo, el vector Fuerza Gravitatoria que la masa 1 ejerce sobre la masa 2.

DATO: G=6.67·10-11 N·m2·kg-2

IR AL VIDEO QUE RESUELVE EL EJERCICIO, UTILIZANDO LA EXPRESIÓN VECTORIAL DE LA LEY DE GRAVITACIÓN UNIVERSAL: https://youtu.be/_w7Y5P47Qys

IR AL VÍDEO QUE RESUELVE EL EJERCICIO, PERO UTILIZANDO EN ESTE CASO LA TRIGONOMETRÍA, QUE ES COMO LE GUSTA A ALGUNOS PROFESORES QUE SE RESUELVA: https://youtu.be/Iy-zBBQ3P4k

EJERCICIO FQ1BE2378:

Disponemos en un sistema de referencia cartesiano, de tres masas puntuales y aisladas: m1=400 g y m2= 1,2 kg , m3=3 kg, colocadas respectivamente en los puntos A (0,3), B (1,1) y C(-3,0). Las coordenadas están expresadas en metros.

a.- Hallar el vector fuerza gravitatoria que la masa 1 hace sobre la masa 2 (F12).

b.- Hallar el vector fuerza gravitatoria que la masa 3 hace sobre la masa 2 (F32).

c.- Hallar el vector fuerza gravitatoria resultante que las masas 1 y 3 hacen sobre la masa 2 (F2).

d.- Hallar el módulo de la fuerza gravitatoria que sufre la masa 2 consecuencia de la distribución de masas del enunciado.

e.- Hallar la aceleración (vector y módulo) a la que se verá sometida la masa 2 como consecuencia de la distribución de masas del enunciado.

DATO: G=6,67·10-11 Unidades S.I.

SOLUCIONES: -2.86E-12 i +5.73E-12 j (N); -1.37E-11 i -3.43E-12 j (N); -1.66E-11 i + 2.3E-12 j (N): 1.65E-11 N; -1.38E-11 i + 1.92E-12 j (m/s2); 1.4E-11 (m/s2)

EJERCICIO INTERDEPARTAMENTAL MAT-FYQ:

En un sistema de referencia cartesiano se sitúan dos masas: m1=5 kg y m2=6 kg, situadas respectivamente en los puntos (2,4) y (-4,0).

Hallar el vector fuerza gravitatoria en el punto medio del segmento que une las masas, supuestas las dos masas indicadas, aisladas y las únicas en el Universo .

DATO: G=6,67·10-11 Unidades S.I.

PUEDE INTERESAR IR A GEOMETRÍA PLANA PARA 1º DE BACHILLERATO

EJERCICIO F2BE2343:

Disponemos de dos planetas de masas M1 y M2 respectivamente, siendo la masa M1 seis veces mayor que M2.

Supongamos que la masa M1 se encuentra a la izquierda de M2.

Si la distancia entre ambos planetas es de 6·106 km, ¿a qué distancia de M1 y en medio de los dos planetas, se encuentra el punto donde la fuerza que ejerce M1 será la tercera parte de la que ejerce M2.

DATO: G=6,67·10-11 Unidades S.I.

SOLUCIÓN: 4.86E9 m

EJERCICIO F2BE2625:

Para la siguiente distribución de masas, supuestas aisladas y las únicas del Universo, en los puntos del S.R. cartesiano habitual, donde las coordenadas están expresadas en metros:

m1 = 2 kg en (3,0); m2 = 1 kg en (-3, -3) y m3 = 4 kg en (0,3)

Responder a las siguientes preguntas, dejando reflejados en el diagrama los vectores que se solicitan:

a.- Vector y módulo del campo gravitatorio creado por la masa 1 en el origen del sistema de referencia, punto (0,0).

b.- Vector y módulo del campo gravitatorio creado por la masa 2 en el origen.

c.- Vector y módulo del campo gravitatorio resultante, que las tres masas crean en el origen.

d.- Vector y módulo de la fuerza gravitatoria que la masa 1 hace sobre la masa 2.

DATOS: G=6.67×10-11 Nm2kg-2

IR A LA RESOLUCIÓN PASO A PASO DEL EJERCICIO: EXAMEN INICIAL PARA FÍSICA DE 2º DE BACHILLERATO: CAMPO GRAVITATORIO Y GRAVITACIÓN EN EL UNIVERSO. EJERCICIOS RESUELTOS

EJERCICIO F2BE2844:

En un sistema de referencia cartesiano, donde las coordenadas se suponen en metros, se sitúa una masa m , aislada y la única del Universo, de 200 kg de masa en el punto (3, -2). (2 puntos)

a.- Hallar el vector intensidad de campo gravitatorio en el punto P (-1, 3).

b.- Hallar el módulo del vector intensidad de campo, a través de las componentes del vector obtenido y utilizando la expresión que corresponde a la definición del vector intensidad de campo gravitatorio a partir de la fuerza gravitatoria por unidad de masa en el punto.

Datos: G = 6,67·10 -11 U.S.I.

IR A LA SOLUCIÓN PASO A PASO DE ESTE EJERCICIO: EXAMEN RESUELTO DE FÍSICA DE 2º DE BACHILLERATO. CURSO 2024-25. PRIMER TRIMESTRE. CAMPO GRAVITATORIO Y GRAVITACIÓN

EJERCICIO F1BE2673:

En un sistema de referencia cartesiano, en el que las coordenadas se suponen indicadas en metros, se sitúan dos masas: m1=3 kg en el punto (-3,2) y m2=4 kg en el punto (4,0).

En esta situación se pide, indicando en el sistema de referencia cada uno de los vectores solicitados:

a.- El vector de posición de la masa 1.

b.- El vector de posición de la masa 2 .

c.- El vector fuerza gravitatoria que la masa 1 hace sobre la masa 2, y su módulo.

d.- La aceleración que experimentará la masa 2 como consecuencia de la acción de la fuerza del apartado anterior sobre ella en módulo.

e.- El vector fuerza gravitatoria que la masa 2 hace sobre la masa 1 y su módulo.

DATO: G=6,67·10-11 u.S.I.

IR A LA RESOLUCIÓN PASO A PASO DE ESTE EJERCICIO DE FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DE MASAS

EJERCICIO FQ1BE2802:

En un sistema de referencia cartesiano donde las distancias están en unidades del S.I. situamos dos masas del siguiente modo, m1 de 1kg en el punto (4,-2) y m2 de 2 kg en el punto (0,3).

a.- Hallar la distancia entre las masas (1 punto)

b.- El vector fuerza gravitatoria que la masa 1 hace sobre la masa 2 (F12). (2 puntos)

c.- El vector fuerza gravitatoria que la masa 2 hace sobre la masa 1. (1 puntos)

d.- Dibujar e indicar claramente las fuerzas que se solicitan en los dos apartados anteriores. (1 p.)

DATOS: G=6,67·10-11 u.S.I.

IR AL ARTÍCULO CON LA RESOLUCIÓN PASO A PASO DEL EJERCICIO: PRUEBA FINAL RESUELTA DE CONTENIDOS DE FÍSICA. PARA FÍSICA Y QUÍMICA DE 1º DE BACHILLERATO. CURSO 2023-24

EJERCICIO F1BE2674:

En un sistema de referencia cartesiano, en el que las coordenadas se suponen indicadas en metros, se sitúan dos masas: m1=3 kg en el punto (-3,2) y m2=4 kg en el punto (4,0).

En esta situación se pide, indicando en el sistema de referencia cada uno de los vectores solicitados:

a.- El vector de posición de la masa 1.

b.- El vector de posición de la masa 2.

c.- El vector fuerza gravitatoria que la masa 2 hace sobre la masa 1, y su módulo.

d.- La aceleración que experimentará la masa 1 como consecuencia de la acción de la fuerza del apartado anterior sobre ella en módulo.

e.- El vector fuerza gravitatoria que la masa 1 hace sobre la masa 2 y su módulo.

DATO: G=6,67·10-11 u.S.I.

IR A LA RESOLUCIÓN PASO A PASO DE ESTE EJERCICIO DE FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DE MASAS

EJERCICIO FQ1BE2703:

En un sistema de referencia cartesiano, en el que las coordenadas se suponen indicadas en metros, se sitúan dos masas: m1=200 g en el punto (-2,3) y m2=1,5 kg en el punto (3,0).

En esta situación se pide, indicando en el sistema de referencia cada uno de los vectores solicitados:

a.- El vector fuerza gravitatoria que la masa 1 hace sobre la masa 2.

b.- El vector fuerza gravitatoria que la masa 2 hace sobre la masa 1

(-5.05E-13, 3.03E-13); (5.05E-13, -3.03E-13)

EJERCICIO FQ1BE2849:

En un sistema de referencia cartesiano, en el que las coordenadas se suponen indicadas en metros, se sitúan tres masas: m1=3 kg en el punto (-3,2) y m2=4 kg en el punto (4,0) y m3=900 g en el punto (3,4).

En esta situación se pide, indicando en el sistema de referencia cada uno de los vectores solicitados:

a.- El vector fuerza gravitatoria que la masa 1 hace sobre la masa 3.

b.- El fuerza resultante que resulta sobre la masa 3 como consecuencia de la presencia de las otras dos masas.

e.- El módulo de la aceleración que sufre la masa 3 como consecuencia de la presencia de las otras dos masas.

DATO: G=6,67·10-11 u.S.I.

IR AL ARTÍCULO CON LA RESOLUCIÓN PASO A PASO DE ESTE EJERCICIO: EXAMEN RESUELTO DE GRAVITACIÓN, FUERZAS GRAVITATORIAS Y MOVIMIENTO CIRCULAR UNIFORME, PARA FÍSICA Y QUÍMICA DE 1º DE BACHILLERATO

EJERCICIO FQ1BE3361:

Disponemos en un sistema de referencia cartesiano, de tres masas: m1=5 kg y m2= 7 kg , m3= 8 kg, colocadas respectivamente en los puntos A (0, 4), B (0, -4) y C(3, 2), estando las componentes expresadas en metros y considerándolas aisladas y las únicas del Universo.

a.- Dibujar con el rigor esperado en este nivel, las masas en el sistema cartesiano, las fuerzas que actúan sobre la masa m1, así como obtener gráficamente la fuerza resultante sobre la masa m1, utilizando correctamente la regla del paralelogramo con las fuerzas implicadas sobre m1.

b.- Obtener vectorialmente la fuerza gravitatoria que la masa 2 hace sobre la masa 1.

c.- Obtener vectorialmente la fuerza gravitatoria que la masa 3 hace sobre la masa 1.

d.- Hallar la fuerza gravitatoria a la que se encuentra sometida la masa 1 como consecuencia de la presencia de las otras dos masas.

e.- Hallar la aceleración a la que se encontrará sometida la masa 1, como consecuencia de la distribución de masas.

DATO: G=6,67·10-11 Unidades S.I.

IR A LA RESOLUCIÓN DEL EJERCICIO: EJERCICIO RESUELTO FQ1BE3361 DE FUERZAS GRAVITATORIAS Y ACELERACIÓN EN DISTRIBUCIONES DE MASAS

EJERCICIO F2BE3210:

Sobre un arco de circunferencia se depositan tres partículas de 40 g de masa, según se muestra en la figura. Teniendo en cuenta que a = 8 cm, calcule y dibuje el vector fuerza gravitatoria que experimenta la partícula situada en el punto P.

Dato: G=6,67·10-11 N·m2/kg2

IR AL ARTÍCULO CON LA RESOLUCIÓN DE ESTE EJERCICIO DE PAU CANARIAS: EXAMEN DE FÍSICA 2º BACHILLERATO, P.A.U. CANARIAS JULIO 2025. CONVOCATORIA EXTRAORDINARIA

EJERCICIO F2BE3200:

En el punto A (2,0) se sitúa una masa de 2 kg y en el punto B (5,0) se coloca otra de 4 kg. Si las longitudes se miden en metros:

a) Calcule el potencial del campo gravitatorio en el punto C (2,4).

b) Si se sitúa una masa de 1 kg en el origen de coordenadas, calcule el vector fuerza resultante que actúa sobre ella y el trabajo realizado para llevar esa masa desde el origen de coordenadas hasta el infinito.

DATO: G = 6,67·10-11 N·m2/kg2

IR AL ARTÍCULO CON LA RESOLUCIÓN PASO A PASO DE ESTE EJERCICIO: EXÁMENES DE FÍSICA 2º BACHILLERATO, P.A.U. CANARIAS JUNIO 2025

 

PODRÍA INTERESAR CONTINUAR CON EL SIGUIENTE ENLACE, DE ESTA MISMA WEB, DE EJERCICIOS DE OBTENCIÓN DEL VECTOR INTENSIDAD DE CAMPO GRAVITATORIO Y ELECTROSTÁTICO: INTENSIDAD DE CAMPO GRAVITATORIO Y ELECTROSTÁTICO


ASPECTOS FORMALES PARA DOCENTES:

CON RESPECTO A LOS SABERES BÁSICOS DE FÍSICA Y QUÍMICA DE 1º BACHILLERATO PREDOMINANTES EN LA ACTIVIDAD:

    • V. Estática y dinámica

CON RESPECTO A LAS COMPETENCIAS ESPECÍFICAS DE FÍSICA Y QUÍMICA DE 1º DE BACHILLERATO QUE SE CONSIDERAN:

FYQ 1BAC C1 , FYQ 1BAC C2 , FYQ 1BAC C3 , FYQ 1BAC C4 , FYQ 1BAC C5 , FYQ 1BAC C6

VINCULADOS A LOS DESCRIPTORES OPERATIVOS  de las Competencias Clave CORRESPONDIENTES

CON RESPECTO A LAS COMPETENCIAS CLAVE Y DESCRIPTORES OPERATIVOS ASOCIADOS:

    • COMPETENCIA MATEMÁTICA Y EN CIENCIA, TECNOLOGÍA E INGENIERÍA (STEM), concretamente los DESCRIPTORES OPERATIVOS STEM1 , STEM2 , STEM4
    • COMPETENCIA EN CONCIENCIA Y EXPRESIÓN CULTURALES (CCEC), concretamente el DESCRIPTOR OPERATIVO CCEC2 y EL DESCRIPTOR OPERATIVO CCEC4.2
    • COMPETENCIA EN COMUNICACIÓN LINGÜÍSTICA (CLL), concretamente los DESCRIPTORES OPERATIVOS CCL2 , CCL3.
    • COMPETENCIA DIGITAL (CD), concretamente el DESCRIPTOR OPERATIVO CD1 y CD3
    • COMPETENCIA EMPRENDEDORA (CE), concretamente el DESCRIPTOR OPERATIVO CE1
    • COMPETENCIA PERSONAL, SOCIAL Y DE APRENDER A APRENDER (CPSAA), concretamente el DESCRIPTOR OPERATIVO CPSAA1.1 , CPSAA4 , CPSAA5

CON RESPECTO A LOS CRITERIOS DE EVALUACIÓN, VINCULADOS A LAS CORRESPONDIENTES COMPETENCIAS ESPECÍFICAS:

FYQ1BAC1.1 , FYQ1BAC1.2 , FYQ1BAC2.3 , FYQ1BAC3.1 , FYQ1BAC3.3 , FYQ1BAC6.1 

Incluyen los descriptores operativos asociados

SE CONTEMPLAN LOS ASPECTOS RELACIONADOS CON EL PERFIL DE SALIDA DEL ALUMNADO DE LOS INSTITUTOS DIOCESANOS DE CANARIAS


PODRÍA INTERESAR LA VISITA AL SIGUIENTE ARTÍCULO DEL PROYECTO, DONDE SE DESARROLLAN LAS ASIGNATURAS DE FÍSICA Y QUÍMICA DE SECUNDARIA Y BACHILLERATO:

  • FÍSICA Y QUÍMICA DE SECUNDARIA (E.S.O.) Y BACHILLERATO: DESARROLLO DE LAS ASIGNATURAS
Visualizaciones: 7.002
2020-04-22
On: 22 de abril de 2020
Previous Post: FUERZAS Y MOVIMIENTO: DINÁMICA Y CINEMÁTICA PARA SECUNDARIA
Next Post: GRAVITACIÓN EN EL UNIVERSO. LEYES DE KEPLER. MOVIMIENTO DE SATÉLITES

INSTITUTO CONCERTADO DE BACHILLERATO Y E.S.O., «EL PILAR»

NUESTRA SEÑORA DEL PILAR

BUSCAR

VISITANTES

1365702
Total de vistas : 4700174

VISITANTES AHORA

10 usuarios En línea

PARA EL DÍA A DÍA

  • ARITMÉTICA PARA SECUNDARIA Y 1º DE BACHILLERATO. OPERACIONES CON POTENCIAS, RADICALES Y LOGARITMOS
    • EXAMEN OPERACIONES CON RADICALES
    • EJERCICIOS DE APLICACIÓN DE LAS PROPIEDADES DE LOS LOGARITMOS. ARITMÉTICA PARA BACHILLERATO
    • EXAMEN INICIAL RESUELTO DE ARITMÉTICA Y ÁLGEBRA PARA MATEMÁTICAS I, DE 1º DE BACHILLERATO. CURSO 2024-25
  • MATERIALES DE ÁLGEBRA PARA 1º DE BACHILLERATO. ECUACIONES
  • LOS NÚMEROS COMPLEJOS. ARITMÉTICA Y ÁLGEBRA PARA BACHILLERATO.
  • CINEMÁTICA: DE MRU A PARABÓLICO
    • EXAMEN RESUELTO DE MOVIMIENTO PARABÓLICO
  • MOVIMIENTO CIRCULAR UNIFORME
  • GRAVITACIÓN EN EL UNIVERSO. LEYES DE KEPLER. MOVIMIENTO DE SATÉLITES
  • APLICACIONES DE LA DERIVADA. OPTIMIZACIÓN Y CÁLCULO DE PARÁMETROS. RECTA TANGENTE Y NORMAL.
  • FUNCIONES: ANÁLISIS PARA 1º BACHILLERATO
  • LÍMITES PARA MATEMÁTICAS DE BACHILLERATO
  • CÁLCULO DE INTEGRALES PARA MATEMÁTICAS DE BACHILLERATO

Entradas recientes

  • EJERCICIO RESUELTO DE MOVIMIENTOS DE TRASLACIÓN DE «JUYONA» ALREDEDOR DE «BAIFO» (SUPONIÉNDOLO CIRCULAR) Y DE ROTACIÓN DE «JUYONA» SOBRE SU EJE
  • EJERCICIO RESUELTO DE SISTEMA DE ECUACIONES LINEALES 3X3 CONTEXTUALIZADO, CON CIERTA COMPLICACIÓN. REGLA DE CRAMER
  • EXAMEN RESUELTO DE MOVIMIENTO PARABÓLICO, MOVIMIENTO CIRCULAR UNIFORME Y FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DE MASAS. FÍSICA Y QUÍMICA 1º BACHILLERATO. PRUEBA 2, PRIMER TRIMESTRE, CURSO 2025-26
  • EJERCICIO RESUELTO DE CAMPO MAGNÉTICO PARA FÍSICA DE 2º DE BACHILLERATO, CORRESPONDIENTE A PRUEBA «TRABAJO TRIMESTRAL» DEL PRIMER TRIMESTRE DEL CURSO 25-26
  • EJERCICIO RESUELTO FQ1BE3361 DE FUERZAS GRAVITATORIAS Y ACELERACIÓN EN DISTRIBUCIONES DE MASAS
  • DISTRIBUCIÓN NORMAL DE PROBABILIDADES PARA MATEMÁTICAS DE CIENCIAS SOCIALES
  • DISTRIBUCIÓN DE LAS MEDIAS MUESTRALES. MATEMÁTICAS CIENCIAS SOCIALES
  • EXAMEN RESUELTO DE PROBABILIDAD E INFERENCIA ESTADÍSTICA, PARA CIENCIAS SOCIALES DE 2º BACHILLERATO. 2ª PRUEBA DEL PRIMER TRIMESTRE DEL CURSO 2025-26
  • EXAMEN RESUELTO DE ANÁLISIS PARA MATEMÁTICAS II DE 2º BACHILLERATO. PRUEBA 2 DEL PRIMER TRIMESTRE DEL CURSO 2025-26
  • EJERCICIO RESUELTO DE FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DE MASAS
  • EJERCICIO RESUELTO (FQ1BE2377) DE FUERZAS GRAVITATORIAS EN DISTRIBUCIONES DISCRETAS DE MASAS, PARA FÍSICA DE BACHILLERATO. CAMPO GRAVITATORIO
  • TRABAJO TRIMESTRAL DE INTEGRALES INMEDIATAS. PRIMER TRIMESTRE DEL CURSO 2025-26. MATEMÁTICAS II, 2º BACHILLERATO
  • EJERCICIOS RESUELTOS DE INTEGRALES RACIONALES CURIOSAS QUE TERMINAN EN ARCOTANGENTE
  • CARTA DEL PAPA LEÓN XIV AL RESPECTO DE LA EDUCACIÓN. 28 DE OCTUBRE DE 2025
  • EXAMEN RESUELTO DE OPERACIONES CON RADICALES Y ECUACIONES. ARITMÉTICA Y ÁLGEBRA PARA MATEMÁTICAS DE 1º BACHILLERATO.
  • EXAMEN RESUELTO DE MOVIMIENTO PARABÓLICO, PARA FÍSICA Y QUÍMICA DE 1º DE BACHILLERATO. PRUEBA 1 DEL PRIMER TRIMESTRE DEL CURSO 2025-26
  • EXAMEN RESUELTO DE GRAVITATORIO Y ELECTROMAGNETISMO, PARA FÍSICA DE 2º DE BACHILLERATO. PRUEBA 1 DEL PRIMER TRIMESTRE DEL CURSO 2025-26
  • EXAMEN RESUELTO DE PROBABILIDAD PARA MATEMÁTICAS DE 2º DE BACHILLERATO CIENCIAS SOCIALES. PRUEBA 1 DEL PRIMER TRIMESTRE DEL CURSO 2025-26
  • EXAMEN RESUELTO DE MATEMÁTICAS II, 2º BACHILLERATO. ANÁLISIS DE FUNCIONES. PRUEBA 1 DEL PRIMER TRIMESTRE DEL CURSO 25-26
  • EJERCICIOS CON SOLUCIÓN DE UTILIZACIÓN DE LAS PROPIEDADES DE LOS LOGARITMOS

WEB DE LENGUA DE «EL PILAR»

ETIQUETAS

1º bachillerato 2º bachillerato A.B.P. ABP algebra análisis análisis de funciones Aprendizaje basado en proyectos aritmética Bachillerato Ciencias cinemática dinámica ecuaciones EJERCICIO RESUELTO ejercicios EJERCICIOS RESUELTOS EL PILAR EXAMEN examen resuelto fisica formación no presencial funciones física bachillerato Física y Química gravitación Institutos Diocesanos Institutos Diocesanos de Canarias LOMLOE Matemáticas matemáticas bachillerato matemáticas ii movimiento ondulatorio NUESTRA SEÑORA DEL PILAR ondas paso a paso probabilidad proyecto de mejora del aprendizaje en ciencias prueba quimica reacciones químicas resuelto secundaria videos óptica

EL PILAR TELEVISIÓN:

PROGRAMA DE NOTICIAS SOBRE GUANARTEME

PROGRAMACIONES

  • PROGRAMACIÓN FÍSICA Y QUÍMICA E.S.O. Y BACHILLERATO
  • PROGRAMACIÓN MATEMÁTICAS E.S.O. Y BACHILLERATO
  • PROGRAMACIÓN TECNOLOGÍA E INGENIERÍA BACHILLERATO

CONTENIDOS

  • FÍSICA Y QUÍMICA 2º E.S.O.
  • FÍSICA Y QUÍMICA 3º E.S.O.
  • FÍSICA Y QUÍMICA 4º E.S.O.
  • FÍSICA Y QUÍMICA 1º BAC
  • FÍSICA 2º BAC.
  • QUÍMICA 2º BAC
  • PRIMARIA
  • MATEMÁTICAS 1º E.S.O.
  • MATEMÁTICAS 2º E.S.O.
  • MATEMÁTICAS 3º E.S.O.
  • MATEMÁTICAS 4º E.S.O.
  • MATEMÁTICAS 1º BAC
    • CLASES DE REFUERZO DE MATEMÁTICAS I 1º BACHILLERATO
  • MATEMÁTICAS 2º BAC
  • TECNOLOGÍA E INGENIERÍA I
  • TECNOLOGÍA E INGENIERÍA II
  • PRÁCTICAS DE LABORATORIO
  • EXÁMENES
    • EXÁMENES MATEMÁTICAS 2º BAC
    • EXÁMENES MATEMÁTICAS II EBAU CANARIAS
    • EXÁMENES MATEMÁTICAS II CCSS
    • EXÁMENES DE MATEMÁTICAS 1º BAC
    • EXÁMENES MATEMÁTICAS 4º E.S.O.
    • EXÁMENES DE FÍSICA 2º BACHILLERATO
    • EXÁMENES DE QUÍMICA 2º BAC
    • EXÁMENES DE FÍSICA Y QUÍMICA 1º BAC
    • EXÁMENES DE FÍSICA Y QUÍMICA 4º E.S.O.
    • EXÁMENES DE FÍSICA Y QUÍMICA 3º ESO
    • EXÁMENES DE FÍSICA Y QUÍMICA 2º E.S.O.
  • MATERIALES DE REFUERZO
    • MATERIALES DE REFUERZO FÍSICA Y QUÍMICA
    • MATERIALES DE REFUERZO MATEMÁTICAS
  • TUTORIA
  • ORIENTACIÓN
  • ATENCIÓN A LA DIVERSIDAD
  • LAUDATO SI’
  • FRATELLI TUTTI
  • AGENDA 2030
  • L.O.M.L.O.E.
  • CONTENIDOS CANARIOS
  • TRATO CON TRATO
  • REVISTA DE PASTORAL
  • ESCUELA DE FAMILIAS
  • P.O.A.P.
  • CIENCIA CON CONCIENCIA
  • EDUCACIÓN PARA LA SALUD
  • COMO MÍNIMO ANTES DE LA E.B.A.U.
  • DISEÑO UNIVERSAL PARA EL APRENDIZAJE (D.U.A.)
  • AYUDANDO A NUESTROS ALUMNOS QUE ESTÁN EN LA UNIVERSIDAD

LO MÁS VISTO

  • DETERMINACIÓN DE FÓRMULAS EMPÍRICAS Y MOLECULARES PARA QUÍMICA DE BACHILLERATO (83.050)
  • PERFIL DE SALIDA Y COMPETENCIAS CLAVE L.O.M.L.O.E. CANARIAS. DESCRIPTORES OPERATIVOS (46.453)
  • LEY DE HOOKE. FUERZA ELÁSTICA (44.065)
  • CANTIDAD EN QUÍMICA: MOL. ÁTOMOS Y MOLÉCULAS. GASES. (39.811)
  • PRÁCTICA LABORATORIO LEY DE HOOKE (30.451)
  • INFINITÉSIMOS EQUIVALENTES PARA EL CÁLCULO DE LÍMITES (25.151)
  • MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO (M.R.U.A.) (19.626)
  • FUNCIONES: ANÁLISIS PARA 1º BACHILLERATO (19.363)
  • MOVIMIENTO RECTILÍNEO UNIFORME (M.R.U.) (18.770)
  • EXAMEN OPERACIONES CON RADICALES. ARITMÉTICA 1º BACHILLERATO (18.754)
  • PROYECTO DE MEJORA DEL APRENDIZAJE DEL INSTITUTO «EL PILAR» (17.769)
  • MAGNITUDES, UNIDADES Y MEDIDAS. FACTORES DE CONVERSIÓN (15.446)
  • OBTENCIÓN DE LA TERCERA FÓRMULA DEL MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO (M.R.U.A.) (15.161)
  • EXAMEN DINÁMICA FÍSICA Y QUÍMICA SECUNDARIA (3º E.S.O.). UTILIZACIÓN DE LAS LEYES DE NEWTON (13.251)
  • MOVIMIENTOS RECTILÍNEOS VERTICALES. CAÍDA LIBRE Y LANZAMIENTO VERTICAL (13.215)
  • PROBABILIDAD. DIAGRAMAS EN ÁRBOL. (13.158)
  • SABERES BÁSICOS. CONTENIDOS LOMLOE. MATEMÁTICAS SECUNDARIA (13.148)
  • CUADERNILLO DE FORMULACIÓN QUÍMICA INORGÁNICA (13.011)
  • APRENDIZAJE BASADO EN PROYECTOS (A.B.P.) EN FÍSICA Y QUÍMICA DE BACHILLERATO (12.956)
  • EJERCICIOS DE ANÁLISIS DE FUNCIONES. MATEMÁTICAS 2º BACHILLERATO (12.912)
  • CINEMÁTICA: DE MRU A PARABÓLICO (12.870)
  • PROPORCIONALIDAD A TRAVÉS DE LAS LEYES DE LOS GASES (12.551)
  • UTILIZACIÓN DE LAS LEYES DE NEWTON EN EJERCICIOS DE DINÁMICA. FÍSICA DE SECUNDARIA Y BACHILLERATO (12.188)
  • EJERCICIOS RESUELTOS DE EFECTO DOPPLER PARA FÍSICA DE BACHILLERATO (12.163)
  • EXAMEN RESUELTO DE DINÁMICA PARA FÍSICA Y QUÍMICA DE 1º DE BACHILLERATO. PRIMER TRIMESTRE CURSO 2024-25 (11.564)
  • EXÁMENES RESUELTOS DE FÍSICA Y QUÍMICA DE 1º BACHILLERATO A Y B. CINEMÁTICA, DINÁMICA Y GRAVITACIÓN (11.390)
  • FUERZAS Y MOVIMIENTO: DINÁMICA Y CINEMÁTICA PARA SECUNDARIA (11.206)
  • EJERCICIOS RESUELTOS DE ESPEJOS ESFÉRICOS. ÓPTICA GEOMÉTRICA PARA FÍSICA DE 2º DE BACHILLERATO (10.919)
  • CÁLCULOS EN REACCIONES QUÍMICAS PARA SECUNDARIA Y BACHILLERATO (10.913)
  • INTERACCIONES FUNDAMENTALES DE LA NATURALEZA (10.237)

Designed using Dispatch. Powered by WordPress.

Contenido no disponible para su copia